2,507 research outputs found

    Acyclic orientations with path constraints

    Get PDF
    Many well-known combinatorial optimization problems can be stated over the set of acyclic orientations of an undirected graph. For example, acyclic orientations with certain diameter constraints are closely related to the optimal solutions of the vertex coloring and frequency assignment problems. In this paper we introduce a linear programming formulation of acyclic orientations with path constraints, and discuss its use in the solution of the vertex coloring problem and some versions of the frequency assignment problem. A study of the polytope associated with the formulation is presented, including proofs of which constraints of the formulation are facet-defining and the introduction of new classes of valid inequalities

    Integer programming approaches for minimum stabbing problems

    Get PDF
    The problem of finding structures with minimum stabbing number has received considerable attention from researchers. Particularly, [10] study the minimum stabbing number of perfect matchings (mspm), spanning trees (msst) and triangulations (mstr) associated to set of points in the plane. The complexity of the mstr remains open whilst the other two are known to be . This paper presents integer programming (ip) formulations for these three problems, that allowed us to solve them to optimality through ip branch-and-bound (b&b) or branch-and-cut (b&c) algorithms. Moreover, these models are the basis for the development of Lagrangian heuristics. Computational tests were conducted with instances taken from the literature where the performance of the Lagrangian heuristics were compared with that of the exact b&b and b&c algorithms. The results reveal that the Lagrangian heuristics yield solutions with minute, and often null, duality gaps for instances with several hundreds of points in small computation times. To our knowledge, this is the first computational study ever reported in which these three stabbing problems are considered and where provably optimal solutions are given. © 2014 EDP Sciences, ROADEF, SMAI.The problem of finding structures with minimum stabbing number has received considerable attention from researchers. Particularly, [10] study the minimum stabbing number of perfect matchings (mspm), spanning trees (msst) and triangulations (mstr) associat482211233CNPQ - CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICOFAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO301732/2007-8; 473867/2010-9; 147619/2010-607/52015-

    Valid inequalities for a single constrained 0-1 MIP set intersected with a conflict graph

    Get PDF
    In this paper a mixed integer set resulting from the intersection of a single constrained mixed 0–1 set with the vertex packing set is investigated. This set arises as a subproblem of more general mixed integer problems such as inventory routing and facility location problems. Families of strong valid inequalities that take into account the structure of the simple mixed integer set and that of the vertex packing set simultaneously are introduced. In particular, the well-known mixed integer rounding inequality is generalized to the case where incompatibilities between binary variables are present. Exact and heuristic algorithms are designed to solve the separation problems associated to the proposed valid inequalities. Preliminary computational experiments show that these inequalities can be useful to reduce the integrality gaps and to solve integer programming problems

    The Fornax Cluster through S-PLUS

    Get PDF
    The Southern Photometric Local Universe Survey (S-PLUS) aims to map ≈ 9300 deg2of the southernsky using the Javalambre filter system of 12 optical bands, 5 Sloan-like filters and 7 narrow-band filters centeredon several prominent stellar features ([OII], Ca H+K, D4000, HÎŽ, Mgb, Hα and CaT). S-PLUS is carried outwith the T80-South, a new robotic 0.826 m telescope located on CTIO, equipped with a wide field of view camera(2 deg2). In this poster we introduce project #59 of the S-PLUS collaboration aimed at studying the Fornaxgalaxy cluster covering an sky area of ≈ 11 × 7 deg2, and with homogeneous photometry in the 12 optical bandsof S-PLUS (Coordinator: A. Smith Castelli).Fil: Smith Castelli, Analia Viviana. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - La Plata. Instituto de AstrofĂ­sica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias AstronĂłmicas y GeofĂ­sicas. Instituto de AstrofĂ­sica La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias AstronĂłmicas y GeofĂ­sicas; ArgentinaFil: Mendez de Olivera, C.. Universidade do Sao Paulo. Instituto de Astronomia, GeofĂ­sica e CiĂȘncias AtmosfĂ©ricas; BrasilFil: Herpic, F.. Universidade do Sao Paulo. Instituto de Astronomia, GeofĂ­sica e CiĂȘncias AtmosfĂ©ricas; BrasilFil: Barbosa, C.. Universidade do Sao Paulo. Instituto de Astronomia, GeofĂ­sica e CiĂȘncias AtmosfĂ©ricas; BrasilFil: Escudero, Carlos Gabriel. Universidad Nacional de La Plata. Facultad de Ciencias AstronĂłmicas y GeofĂ­sicas; Argentina. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - La Plata. Instituto de AstrofĂ­sica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias AstronĂłmicas y GeofĂ­sicas. Instituto de AstrofĂ­sica La Plata; ArgentinaFil: Grossi, M.. Observatorio de Valongo; BrasilFil: SodrĂ©, L.. Universidade do Sao Paulo. Instituto de Astronomia, GeofĂ­sica e CiĂȘncias AtmosfĂ©ricas; BrasilFil: de Bom, .. Centro Brasileiro de Pesquisas FĂ­sicas; BrasilFil: Zenocratti, Lucas JesĂșs. Universidad Nacional de La Plata. Facultad de Ciencias AstronĂłmicas y GeofĂ­sicas; Argentina. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - La Plata. Instituto de AstrofĂ­sica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias AstronĂłmicas y GeofĂ­sicas. Instituto de AstrofĂ­sica La Plata; ArgentinaFil: de Rossi, Maria Emilia. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Ciudad Universitaria. Instituto de AstronomĂ­a y FĂ­sica del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de AstronomĂ­a y FĂ­sica del Espacio; Argentina. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Ciudad Universitaria. Instituto de AstronomĂ­a y FĂ­sica del Espacio(i); ArgentinaFil: Cortesi, A.. Observatorio de Valongo; BrasilFil: Cid Fernandes, R.. Universidade Federal de Santa Catarina; BrasilFil: Lopes, A.. Ministerio de Ciencia, TecnologĂ­a E Innovacao. Observatorio Nacional. Departamento Astronomia y AstrofĂ­sica; BrasilFil: Telles, E.. MinistĂ©rio de Ciencia, Tecnologia e Innovacao. Observatorio Nacional; BrasilFil: Oliveira Schwarz, G. B.. Universidade Anhembi Morumbi; BrasilFil: Dantas, M. L. L.. Nicolaus Copernicus Astronomical Center; PoloniaFil: Faifer, Favio RaĂșl. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - La Plata. Instituto de AstrofĂ­sica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias AstronĂłmicas y GeofĂ­sicas. Instituto de AstrofĂ­sica La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias AstronĂłmicas y GeofĂ­sicas; ArgentinaFil: Chies Santos, A.. Universidade Federal de Santa Catarina; BrasilFil: Saponara, Juliana. Provincia de Buenos Aires. GobernaciĂłn. ComisiĂłn de Investigaciones CientĂ­ficas. Instituto Argentino de RadioastronomĂ­a. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - La Plata. Instituto Argentino de RadioastronomĂ­a; ArgentinaFil: Reynaldi, MarĂ­a Victoria. Universidad Nacional de La Plata. Facultad de Ciencias AstronĂłmicas y GeofĂ­sicas; ArgentinaFil: Andruchow, Ileana. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - La Plata. Instituto de AstrofĂ­sica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias AstronĂłmicas y GeofĂ­sicas. Instituto de AstrofĂ­sica La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias AstronĂłmicas y GeofĂ­sicas; ArgentinaFil: Sesto, Leandro Alberto. Universidad Nacional de La Plata. Facultad de Ciencias AstronĂłmicas y GeofĂ­sicas; Argentina. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - La Plata. Instituto de AstrofĂ­sica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias AstronĂłmicas y GeofĂ­sicas. Instituto de AstrofĂ­sica La Plata; ArgentinaFil: Mestre, M.. Universidad Nacional de La Plata. Facultad de Ciencias AstronĂłmicas y GeofĂ­sicas; Argentina. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - La Plata. Instituto de AstrofĂ­sica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias AstronĂłmicas y GeofĂ­sicas. Instituto de AstrofĂ­sica La Plata; ArgentinaFil: de Amorim, A. L.. Universidade Federal de Santa Catarina; BrasilFil: de Lima, E. V. R.. Universidade do Sao Paulo. Instituto de Astronomia, GeofĂ­sica e CiĂȘncias AtmosfĂ©ricas; BrasilFil: Abboud, J.. Universidade do Sao Paulo. Instituto de Astronomia, GeofĂ­sica e CiĂȘncias AtmosfĂ©ricas; BrasilFil: Cernic, V.. Universidade do Sao Paulo. Instituto de Astronomia, GeofĂ­sica e CiĂȘncias AtmosfĂ©ricas; BrasilFil: Souza de Almeida Garcia, I.. Universidade do Sao Paulo. Instituto de Astronomia, GeofĂ­sica e CiĂȘncias AtmosfĂ©ricas; Brasil62° ReuniĂłn Anual de la AsociaciĂłn Argentina de AstronomĂ­aRosarioArgentinaUniversidad Nacional de RosarioComplejo AstronĂłmico Municipal Galileo Galile

    Measurement of the Bs0→J/ψKS0B_s^0\to J/\psi K_S^0 branching fraction

    Get PDF
    The Bs0→J/ψKS0B_s^0\to J/\psi K_S^0 branching fraction is measured in a data sample corresponding to 0.41fb−1fb^{-1} of integrated luminosity collected with the LHCb detector at the LHC. This channel is sensitive to the penguin contributions affecting the sin2ÎČ\beta measurement from B0→J/ψKS0B^0\to J/\psi K_S^0 The time-integrated branching fraction is measured to be BF(Bs0→J/ψKS0)=(1.83±0.28)×10−5BF(B_s^0\to J/\psi K_S^0)=(1.83\pm0.28)\times10^{-5}. This is the most precise measurement to date

    Differential branching fraction and angular analysis of the decay B0→K∗0ÎŒ+Ό−

    Get PDF
    The angular distribution and differential branching fraction of the decay B 0→ K ∗0 ÎŒ + ÎŒ − are studied using a data sample, collected by the LHCb experiment in pp collisions at s√=7 TeV, corresponding to an integrated luminosity of 1.0 fb−1. Several angular observables are measured in bins of the dimuon invariant mass squared, q 2. A first measurement of the zero-crossing point of the forward-backward asymmetry of the dimuon system is also presented. The zero-crossing point is measured to be q20=4.9±0.9GeV2/c4 , where the uncertainty is the sum of statistical and systematic uncertainties. The results are consistent with the Standard Model predictions

    Measurement of the Bs0→J/ψηB_{s}^{0} \rightarrow J/\psi \eta lifetime

    Get PDF
    Using a data set corresponding to an integrated luminosity of 3fb−13 fb^{-1}, collected by the LHCb experiment in pppp collisions at centre-of-mass energies of 7 and 8 TeV, the effective lifetime in the Bs0→J/ψηB^0_s \rightarrow J/\psi \eta decay mode, τeff\tau_{\textrm{eff}}, is measured to be τeff=1.479±0.034 (stat)±0.011 (syst)\tau_{\textrm{eff}} = 1.479 \pm 0.034~\textrm{(stat)} \pm 0.011 ~\textrm{(syst)} ps. Assuming CPCP conservation, τeff\tau_{\textrm{eff}} corresponds to the lifetime of the light Bs0B_s^0 mass eigenstate. This is the first measurement of the effective lifetime in this decay mode.Comment: All figures and tables, along with any supplementary material and additional information, are available at https://lhcbproject.web.cern.ch/lhcbproject/Publications/LHCbProjectPublic/LHCb-PAPER-2016-017.htm

    Measurement of the mass and lifetime of the Ωb−\Omega_b^- baryon

    Get PDF
    A proton-proton collision data sample, corresponding to an integrated luminosity of 3 fb−1^{-1} collected by LHCb at s=7\sqrt{s}=7 and 8 TeV, is used to reconstruct 63±963\pm9 Ωb−→Ωc0π−\Omega_b^-\to\Omega_c^0\pi^-, Ωc0→pK−K−π+\Omega_c^0\to pK^-K^-\pi^+ decays. Using the Ξb−→Ξc0π−\Xi_b^-\to\Xi_c^0\pi^-, Ξc0→pK−K−π+\Xi_c^0\to pK^-K^-\pi^+ decay mode for calibration, the lifetime ratio and absolute lifetime of the Ωb−\Omega_b^- baryon are measured to be \begin{align*} \frac{\tau_{\Omega_b^-}}{\tau_{\Xi_b^-}} &= 1.11\pm0.16\pm0.03, \\ \tau_{\Omega_b^-} &= 1.78\pm0.26\pm0.05\pm0.06~{\rm ps}, \end{align*} where the uncertainties are statistical, systematic and from the calibration mode (for τΩb−\tau_{\Omega_b^-} only). A measurement is also made of the mass difference, mΩb−−mΞb−m_{\Omega_b^-}-m_{\Xi_b^-}, and the corresponding Ωb−\Omega_b^- mass, which yields \begin{align*} m_{\Omega_b^-}-m_{\Xi_b^-} &= 247.4\pm3.2\pm0.5~{\rm MeV}/c^2, \\ m_{\Omega_b^-} &= 6045.1\pm3.2\pm 0.5\pm0.6~{\rm MeV}/c^2. \end{align*} These results are consistent with previous measurements.Comment: 11 pages, 5 figures, All figures and tables, along with any supplementary material and additional information, are available at https://lhcbproject.web.cern.ch/lhcbproject/Publications/LHCbProjectPublic/LHCb-PAPER-2016-008.htm

    Evidence for the strangeness-changing weak decay Ξb−→Λb0π−\Xi_b^-\to\Lambda_b^0\pi^-

    Get PDF
    Using a pppp collision data sample corresponding to an integrated luminosity of 3.0~fb−1^{-1}, collected by the LHCb detector, we present the first search for the strangeness-changing weak decay Ξb−→Λb0π−\Xi_b^-\to\Lambda_b^0\pi^-. No bb hadron decay of this type has been seen before. A signal for this decay, corresponding to a significance of 3.2 standard deviations, is reported. The relative rate is measured to be fΞb−fΛb0B(Ξb−→Λb0π−)=(5.7±1.8−0.9+0.8)×10−4{{f_{\Xi_b^-}}\over{f_{\Lambda_b^0}}}{\cal{B}}(\Xi_b^-\to\Lambda_b^0\pi^-) = (5.7\pm1.8^{+0.8}_{-0.9})\times10^{-4}, where fΞb−f_{\Xi_b^-} and fΛb0f_{\Lambda_b^0} are the b→Ξb−b\to\Xi_b^- and b→Λb0b\to\Lambda_b^0 fragmentation fractions, and B(Ξb−→Λb0π−){\cal{B}}(\Xi_b^-\to\Lambda_b^0\pi^-) is the branching fraction. Assuming fΞb−/fΛb0f_{\Xi_b^-}/f_{\Lambda_b^0} is bounded between 0.1 and 0.3, the branching fraction B(Ξb−→Λb0π−){\cal{B}}(\Xi_b^-\to\Lambda_b^0\pi^-) would lie in the range from (0.57±0.21)%(0.57\pm0.21)\% to (0.19±0.07)%(0.19\pm0.07)\%.Comment: 7 pages, 2 figures, All figures and tables, along with any supplementary material and additional information, are available at https://lhcbproject.web.cern.ch/lhcbproject/Publications/LHCbProjectPublic/LHCb-PAPER-2015-047.htm
    • 

    corecore